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Classical solutions
of two-dimensional

Grassmannian models

Wi. ZAKRZEWSKI (*)

CERN - Geneva

Abstract. We present classical solutionsof two-dimensionalEuclideanGrassman-
nian amodels(harmonicmaps)anddiscusssomeof their properties.

1. INTRODUCTION

It is generally believedthat non-Abeliangaugetheoriesare likely to play an

importantrole in any field theoreticaldescriptionof the theory of elementary
particles.In particular,weak and electromagneticmteractionsare describedby

such a theory,and it is generally felt that this is also the casefor stronginterac-
tions. Gauge theories,in the case of an SU(2) symmetrygroup, are defined in

termsof a Lagrangiandensity:
(1.1) L=trF F

P’ P1’

where

(1.2) F =a A —3 A +IA ,A 1.
P” 51 I’ I’ 51 51 V

and whereA
51 is an SL”(2) valuedvectorfunctionof a Euclideanfour-dimensional

space-time.

(*) On leave of absencefrom: Dept. of MathematicalSciences,University of Durham,
DurhamDHI 3LE, United Kingdom.

Thisarticleis basedon lecturesgiven by the Author during the Trimester on Mathema-
ticalPhysicsat the StefanBariachInternationalCentre.Warsaw,Sept-Nov.1983.



40 Wi. ZAKRZLWSKI

One of the main stumbling blocks in making any progresswith thesetheories

is our lack of understandingof how to performfunctional integrations

(1.3) /DI.4511’ 1d
4x~tA

51)~(A)

in terms of which most quantitiesof the theory are given. One line of approach

is to attempt to calculatetheseintegralsnumerically. As, strictly speaking,ftiiic-

tional integrationsinvolve infinite numbersof point integrations,suchnumerical

approachesunavoidably involve various approximationsin the form of discretiza-

tion of the problem, and then further approximationsassociatedwith estimating

valuesof the resultant integrals— now finite in number.hut still far too many.

Oneresortsto all sortsof samplingtechniques,suchas Monte (~arlomethods,etc.,

the results of such numericalattemptsareencouraging,but so far not conclusive.

Whenone tries to calculateintegralslike (1.3) analytically, one finds that the

only viable line of approachavailableat presentis basedon theexpansionaround

stationary points of the action and then perturbationtheory of the resultant

effective theory. To proceedin this way. onehasto determinefirst all stationary

points of the action. They are, of course,given by theEuler-Lagrangeequations

of the theory, which are:
(1.4) D F =3 F —IA .1” J=0.

51 511’ 51 511’ 51 511’

When written in terms of the gauge potential A51, these equationsare highly

one-linear, second order partial differential equations. As is well known, due

to theBianchiidentity

(1.5) D *J.~ =0
P

where

(1.6) *F = — e
_) p,’oø Q5~

a subclassof solutions of Eqs. (1.4) is provided by the solutions of the first

orderequations(called ~<self-duality’ equations)

(1.7) F =±*F
Pr 51’

This lastequationcan he thought of as coming from

(1.8)

where
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(1.9) qjx)=tr,F~*F51

is thedensityof the topologicalcharge.
We are only interestedin those solutionsof equationsof motion for which

the action is finite, as it is only for them thatwe know how to set up thepertur-

bation theory of fluctuations around them. This fact effectively forces A51 to
becomepure gaugeat infinity and is responsible,in this case, for the existence
of the topologicallyconservedquantity

(1.10) Q=fd4x~(x).

All finite actionsolutionsof Eq. (1.7) havebeenimplicitly, thoughunfortunately
not explicitly, determinedby Atiyah, Drinfeld, Hitchin and Manin [1]. In the
caseof the plus (minus) sign in (1.7), the correspondingfinite action solutions

are called instantons(anti-instantons).A simple applicationof a Bogomolnyi

bound shows that the instantonandanti-instantonsolutionscorrespondto the
local minima of the action. Hence, thesesolutions arestableundersmall fluctua-

tions. Even though all finite action solutionsof (1.7) were found, it is still not
clear whetherthereare any further solutionsof (1.4) which are of finite action,
but which are not solutionsof (1 .7). Somepartial negativeresultsexist,but there

is no proof, evenfor theSU(2) theory. Had suchnon-instantonsolutionsexisted,

they presumablywould also have had to be included in the stationarypoint
calculationof (1 .3). We still do not know.

Moreover, the question of calculating the fluctuations about the instanton
solutionshasturnedout to bea hardmathematicalproblem.Evenin the simplest

caseof the functional integral (1 .3) [0(A) = 1], only a partial answeris known.

Clearly,not many terms will be calculatedin the perturbativeschemementioned
above. Thus it is interesting to know that there exist simple two-dimensional

models which bear some resemblanceto four-dimensionalnon-Abeliangauge

theories, and in which some of thesequestionscanbe partially answered.These
modelsinclude the CF~

1 model originally found by Gob andPerelomovand
Eichenherr12], and also its non-Abeliangeneralizations[3] (so-calledcomplex

Grassmannmodels). They are essentially free field theories with non-linear
geometrical constraints. Many of their propertiesstem from their geometrical

structure.They are known to haveanassociatedlinearscatteringproblem,name-
ly, their equationof motion can be written as an integrabihity condition of a

set of linear equationswith a free parameter.They havean infinite set of con-
servation laws, and these conservedquantitiesgeneratean infinite dimensional
algebraof dynamicalsymmetries.Thus,some of their propertiesmay be related
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to these additional symmetriesof themodelsandhencenot be necessarilya guide

to what happensin non-Abehiangaugetheories.On theotherhand, thesemodels

are also interestingper Se; in addition, recent work on supergravityhasshown

that some sectorsof this theoryareeffectively describedby o modelsvery similar

to the modelswe will discussin the next sections[4]. Moreover,it appearsthat

thesemodelsmay evenbedirectly relevantin somespecificphysicalcases.

2. CPt~’ MODEL. COMPLEX GRASSMANNIAN a MODELS AND THEIR

INSTANTON SOLUTIONS

Let us denoteby G(M, N) the complex Grassmannmanifold, which can be

written as a quotientspace

U(N)
(2.1) G(M. N) =

(1(M) x L!(N—M)

where U(K) denotesthe group of K x K unitary matrices.Let g = g(x), where

= (x
1. x2) ER

2, he an elementof (1(N)which we decomposeas

g = (Z, Y)

where

(2.2) Z = (Z
1,..., ZM). Y = (Z~1~

in which eachZ~(i = 1 N) is an N-component column vector. Then the

unitarity of g equivalent to the fact that thesevectorsare orthonormal to each

other

(2.3) ZI Zk =

6ik

The Grassmannmodelsare definedby consideringthe N x Al matrix Z as a dyna-

mical variable,togetherwith the constraint [which comesfrom (2.3)]

(2.4) ZZ=IAI

where denotesthe Al x ill unit matrix and + denotesHermitian conjugation,

The Lagrangiandensityand the action of the modelare definedas

(2.5) L = tr{(DZ)~DZ}, S = fd2xL,

wherethe covariantderivativeD
51 is definedby

(2.6)

in which A is a compositegaugepotential defined by
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(2.7) A =Z~3 Z A ~=—A
51 51 51 51

Theabove-givenLagrangianis invariantunder local U(M) transformations

Z-*Z’=Z/i where h =h(x)EU(M),

as then

(2.8) DZ’ = (DZ)h, (DZ ‘)~= h + (Dz)~
andalso underglobal (1(A) transformations

(2.9) Z-+Z’=gZ, gEU(N), g=const.

In the special case when M = I, the abovemodel is called the C~PA’lmodel,

as the complex Grassrnannmanifold in this case is equivalentto the complex
projective space. The CPN~~model is therefore described by a complex N-

component column vector, togetherwith the normalizationcondition Z2 =

= Z~‘ Z = 1. It possessesthe Abehian U(1) symmetry andits compositegauge

potentialA
51 is a pureimaginaryfunction.

The Euler-Lagrangeequationsof the Grassmannianmodels, called— in what

follows — the equationsof motion, are given by

(2.10) D51D51Z+Z(D51Zy~’DZ=0

togetherwith the constraint(2.4).
As in the gauge theory case,one can introduce a topological chargedensity

(2.11) a.(x) = ~ rr(Z~3,Z)

and thenconsiderequationscoming from the relation (1.8) (L = ±q, selfduality
equations).They are given by
(2,12) D Z=±ie DZ

51 51V V

and correspond to Eq. (1.7). Their finite actionsolutionsareagaincalledinstan-

tons and anti-instantonsrespectively.To obtain a better insight into the proper-
ties of thesemodels, it is convenientto changethe Euclideanvariables(x, j’)

to holomorphicandantiholomorphicvariables

(2.13) X~=X±i)’

andthenrewriteall expressionsin termsof thesevariables.We find

~= 2 tr[(D~Z)~D~Z+ (DZ)~DZ]
(1J4)

-. a~= 2 tr[(D~Z)~D~Z—(DZ)’~D_Z]

where the derivativesdenotethe covariant derivative(2.6), in which the differen-
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tiation is performedwith respectto thex, variables.As

(2.15) ID÷,D]’I’= — ‘l’q.

the equationsof motion (2,10) canbe rewritten as

(2.l6a) DD~Z +Z(D÷Z)’4’D~Z= 0

or equivalently

(2.l6b) D~DZ + Z(D_Z)”D,Z = 0

andthe self-dualityequations(2.12) are given by

(2.17) D~Z= 0.

The solutions of these equationsin the CPN’l case were already given in the

original paper of D’Adda et al. [SI; for the general Grassmannianmodels they

weregivenby A. Macfarlane[6]. In the (‘pNl casethey aregiven by

(2.18) Z=f/~fI

where, in the instanton(anti-instanton)case,thef vector is a function of only

The finiteness of the action imposes conditions on the components
off — they have to be rational functions of their argument.However,dueto the

invariance under an overall factor multiplication [due to (2.8)]. it is sufficient

to consider only polynomial componentsof f (with no over-all factors). This

was found alreadyin the original paperof D’Adda et al. 151. in which adetailed

discussionof the instanton(andanti-instanton)solutionswasgiven.
In analogy with (2.18), we find that an instanton solution of the general

G(M, N) model is obtainedfroln a set of Al linearly independent holomorphic

vectors . . . .t~.properly orthonormahizedin orderto satisfythe constraintt2.4).

Let us denote by 2 the N x Al matrix consistingof the holomorphic vectors

2 = (f
1 . . . J~),anddefine anAl x N Hermitianmatrix ill by

(2.19) M=2~Z.

Becauseof the linear independenceof the vectorsAl is positive definite and

invertible. The Hermitian squareroot matrices ~ 1/2 and ~ 1/2 exist and are

unique.Now it is easyto seethat

(2.20) Z = 2CM)-1/2

which is a simplegeneralizationof (2.18).satisfiesthe instantonequationsas well

as the constraint(2.4).
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We see that, in contradistinction to the gauge theory case,the form of all

solutionsto the first order differential equations(2.17) is very simpleandexpli-
cit, and this suggeststhat it may not be too difficult to find finite action solu-

tionsof Eq. (2.16) which are not solutionsof (2.17).
Such a construction of all finite action solutions of Eq. (2.16) for the CP~’~1

models and for a large class of solutions of general Grassmannianmodels will be
given in the next sections, where we will also discuss their proporties. This

construction arose out of a work by BorchersandGarber, who have considered a
similar problem in the caseof the 0(N)a models.This work, with severalmodifi-
cations, could be adaptedto the Grassmanniancase,where it allows for an elegant
mathematical pattern and brings out the geometry of the problem.

Let us finish this sectionby reformulating the model in a gauge invariant way,
the formulation which is often more convenient than the more conventional one
discussedso far. To do this, we introduce an N xN projection matrix F, defined
by

(2.21) P=ZZ~=~Z
1Z~, P=P~=P

2.

The Lagrangian takes the form

(2.22) L = tr(a
51Pa51P)

together with the constraint F
2 = P, and the equation of motion is given by

(2.23) [a
51a51p,Fj = 0.

In this formulation, the only difference betweendifferent Grassmannianmodels
resides in the rank ofF.

Finally, the first order (self-dual) equations(2.17),when written in terms of
the projection matrix P, are givenby

(2.24) aF’ P = 0 and ,~V.a~= 0

or equivalently

(2.25) P’0~P=0 and 3~P~P=0.

3. CPN l ISOTROPY AND GENERAL SOLUTIONS

First of all, we consider the CPA~~models,for which we are ableto prove
some identities (called isotropy conditions by pure mathematicians)which

allow us to determine all finite action solutions of the equations of motion.
We will then show that similar identities do not necessarilyhold in more general
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Grassmannianmodels, thus leaving open the questionof the completenessof

thederivedsolutions.

To constructgeneral solutions of the equations of motion, we first study

consequencesof their existence. If ZaLV4~.v ) providessuch a finite action solu-

tion. then we can show(isotropy condition)

(3.1) A~’=D’Z’D~Z~=0 for in=i+f~l.

It is clear that A~1= A~0= 0. Moreover, the finitenessof the action and the

conservationof energymomentumgive A~ = 0. The generalcasecan be proved

by induction. We refer the reader, for details of this proof, to Ref. [7]. Here we

will stateonly that one shows first that 0_A = 0, and then uses a variant of

Liouville’s theoremto provethe vanishingAV.

Equation (3.1) showsus that, for a givenZ, we can constructtwo subspaces

of CN:

H ={D’Z /=1 1
k — a’ ‘ ‘ ‘

(3.2)
H~1={D~Za~/ = 1,2,..

mutually orthogonaland orthogonaltoZ. Then one considersthe vectorspace

= {Z~.HK} and shows that one can find in it a holomorphicN component
vectorf (i.e.,

3fa = 0), expressedas a rational functionofZ and its derivatives

[again, for details, see Ref. [7]]. It is not difficult to showthatJ must be inero-

morphic; moreover, as solutions to the equationsof motion areinvariant under

theconformal transformationx~—s- l/x~,we seethatJ~must be rational.

Now it is possible to show that HK is spanned by ,t~.~ . .

and that it is possibleto expressZ~in termsof this basis.This way we can show

that if we write

Z
(3.3) Z = —~-

(3.4) 2= 0~fa_~M~’0+Allk i~+’a

where

(3.5) M
0 = ötf• 3~,. i. / 0. 1. — I -

It now remains to check that indeedZ of (3.3) solvesthe equationsof motion.

This we can do in severalways, we can show [71that both Z and D+D Z are

in HK and are orthogonal to HK 1 — thus they must be proportional:
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(3.6) D+JX /~= XZ~

Then, a few further lines of algebra show that the Z solves the equationsof

motion. Alternatively, we can reformulate our construction, then the proof

is evensimpler. Thiswe will do in the next sections.

4. ALTERNATIVE FORMULATION.
GRAMM-SCHMIDT ORTHONORMALIZATION

Considera vector0 � g E CA’, and define an operator~ by

g(~3~g)
(4.1) P5, g=3~g 2

anddefineits repeatedactionas

(4.2) P~g=F~(P~’~g).

Then it is amatterof algebrato showthat ZOf (3.4)isin fact given by

(4.3) Z=(P~f).

To proceed further, we note the following useful propertiesof P~f(whenf
is ananalyticvector):

1. P~f~P~f=0 if l~/=K

pKfj
2

2.
3(pKf)~.pK_1f ++ + pK_li-2

+ J

(4.4) / P!~~f P~f
3 3’ =

+\~pK1f~2 ~~‘fI
2

4. P~f=0.

These properties either follow directly from their definition or are very easy

to prove. In proving them, it is useful to introduce wedge productsoff and

its derivatives.In this way, we define

(4.5) li~5=fA3~fA...A3~f i=0 N—i

andthen it is easyto checkthat

(4.6) P~f= (/
1K_i)+ ,11A

where the dot product in (4.6) denotesthe summationover all indices of hKl
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and all but one of ~ A’, If f is analytic, so is Ii ~ althoughit is an elementof a

larger-dimensionalspace. Thus, (4.6) suggestsa possible interpretation for the

non-instanton (K ~ 0) solutions — they correspondto mixtures of instantons

and anti-instantons.Both instantonsarid anti-instantonsare elementsof larger-

dimensionalspaceand are of specialform [Eq. (4.5)]. This special form allows

their mixtures (4.6) to be elementsof (~N,corresponding to tl1e solutions of

the equationsof motion of the (‘P”~
1 model. Thus, in a way, (4.6) shows that

all non-linearitiesof the CP~”1model are associatedwith the dimensionof its

manifold and, when properly reinterpreted, the equations of motion are just the
Cauchy-Riemannrelation for vectors/i~, just as in the instantoncase.However.

the vectors/z~’~haveto havetheir rather specific form (4.5).
The orthogonality properties(4.4) of the P~f vectorsshow that one can

think of them as being obtained from the sequenceof holomorphic vectors

(4.7) f. 3ff. 3,~f ~ . -

tl’irough the Gramm-Schmidt orthogonalizationprocedure.Moreover, we see
that when thesevectorsare normalized, they provide solutions of the C.PN I

model equationsof motion. Let usdenoteby

(4.8) C

1~ ~2,...,eN

the vectorsobtainedfrom the sequence(4.7) by the processof Gramm-Schmidt

orthonormalization.Then, as Sasaki [8] hasshown,one cangive a simple proof
that any element of the sequence(4.8) solves the CPA’_~model equationsof

motion. To do this, we go to the projectoroperatorformulation of the model.
We take, say, the 1thl elementof the sequenceand considerthe corresponding

projector

(4.9) F=e1e
1.

We also consideranotherprojector

/—~1

(4.10)

Then,usingrelations

(4.1 Ia) 3e
1 = e1 1(e1~3e1) + e1(e~3 e1)

and

(4.IIb) ~

which follow from (4.4), we can establishseveral identitiessatisfiedby P and Q.
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ConsideringQ as a projector describing an instantonsolution of G(/ —

we have

(4.12) 3_Q’Q=O.

In the sameway, P + Q describesan instantonsolutionof G(j, N) andso satisfies

(4.13) 3_(P+Q)’(P+Q)=O.

However,due to (4.11),we have

(4.14) 3PQ=0

which allowsusto derive,from (4.13) and(4.12),

(4.15) 3PP+3QP=O.

However, from (4.11),it alsofollows that

(4.16) P’3~Q=3~Q

and,by Hermitianconjugation

(4.17)

which permitsus to rewrite (4.15)as

(4.18) 3_P P + 3_Q = 0.

If we now takethe Hermitianconjugateof (4.18),

(4.19) P0~P+3~Q=0

and considerthe combination of 3~of (4.18) — 3_ of (4.19), we obtain the
desiredequation

(4.20) [0~3P,P]=0

which completestheproof that theequationof motion is satisfied.
This way of checkingwhether a given vectorsatisfiesthe equationsof motion

may appearnot to be the most convenient choice when CPN~ modelsare
studied;it is, however,very useful for the more generalGrassmannianmodels.

5. GENERAL GRASSMANNIAN MODELS

When we considera more generalGrassmannianmodel,say, G(M, N), we find

several classesof solutions [9]. In particular, we expect that the most generic

solutions will dependon Al arbitrary analytic vectors f1 . . . ~M, From them, by

the generalizationof the constructionof the previoussection,we can construct
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the required solution. We proceedas follows, We chooseintegers Js’~. / = 1 .11

such that A ~ K, �~ .. ~ A’~~ 1. and such that ~ -- V. Ilien ssc consider

the A’ vectors /

(5.1) a~’t;. 1, = 0 , — i. =

which, except in special cases.. will span (“s , We denote thesevectors by g

[3= I . . . A choosing a certain order. Next we define thesubspaces/1 =~g

(with 110 = ~ and 11, = (1\ for [3~ A’ and perform a Uraiiiiii - Schmidt orthonoi--

malization

~,=g—g4l11. [3= l.A
(5.2)

cc= -

Then thestatementis that theGrassmannians/ ([3), [3 = I A’ — if + I - defined

by the orthonormal vectorsc -- arc solutions of the equations01’

motion provided that the vectors s’ [. and therefore ,c . arechosenin such an

order that for all fi

5.3) aji (iIl~,.

This condition is fulfilled, for example. by the choice g ~ .15/ - 0 .11.

0+12. - . . . ~ 821’ hut, of course,other permutationsof this particular

order also fulfil (5,3), such as starting the sequenceg with a certain number

of derivative vectors 8’~‘1 and then continuing with j~.,t~..... and further on

with - etc. To show that the (irassmannianZ) [3 ) s’atisl’ies theequations01

motion, one introducesF, the proJectoron 11 ,~ - ~,“11, - and Q. the projector

on 11 . One then repeatsall the argumentsof the last part of the last section

[observing on the was’ that Q describesan instanton of ( ) I ..\) and 1’ H- (1
an instanton of (1) j3 + ill — I ..\‘ J.

Having found these solutions of the equationsof in otion basedon 11 arhitrar\

analytic vector functions. we may ask whetherthere arel’urtlier solutions of the

(1(31 .A’) models. It furns out that the answer to this question is positive: the

general structureof these further solutions is such that they are all determined

in terms of a smaller number of arbitrary holomorphic (with polynomial com-

ponents) / . with ill’ <.11, 11/c vectors of basis g are so chosenthat

~+ ‘1~~ for any [3. Then one can l’oni/ an ordered set of vectors ‘,

constructed in the same way as bef’ore and then partition this ordered set il/to

a sequenceof subsets,eachof length at least31’ (with the exceptionof perhaps

the first one). Then, taking Al vectors which are given by a collection of such
subsetsgives a Grassmannianwhich satisfies the equationsof motion of the

G(il. N) model. One can easily give examples of such special solutions. I-or
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instance,if we take M’ = 1, then all vectorsof the basis are given in terms of

one vector f. Then 8+H
0 C H0~ and any Al distinct vectorsfrom the sequence

[e2 } provide a solutions. In the case of two holomorphic vectorsj~.f2with.

say, g,, ={f~,f,~ ö~f2... .~, i.e., such that 3~H0cH0~2,the sets{e1,e2,

e6, e7 or [e3, e4,e7,e~} aresolutionscorrespondingto Al = 4.

To prove that the equationsof motion are satisfied, we observethat if we

denote the correspondingprojector by P and the complementaryprojector

by Q (i.e., such thatP + Q is a projectoron thesurfacespannedby all the vectors

of the basis up to the last vector in the sequencedefining theGrassmannian),

we have

3(P + Q) ‘(P + Q) = 0
(5.4)

QP=P Q=0

andalso

(P + Q)’ ~ Q = ~+ Q
(5.5)

3(P + Q) ‘P = 0

from

(5.6)

Thus

(5.7)

andwe see that

(5.8) ~

and we find thatP is a solution if Q is alsoone. To prove that Q is asolution, we

repeatthis prescription, this time treating Q as our previousP and introducing

a new complementaryQ’. We find

(5.9) [3~ 3Q, Q] = [o~ 3Q’, Q’I

thus showing that the problem is reducedto proving that Q’ satisfiesthe equa-

tions of motion (of a correspondingGrassmannian).It is easyto convinceoneself

that the final Q in this chainof stepsdescribesan instantonsolution, proving that

all intermediateQ’.v (and F’s) are also solutionsof the correspondingequations

of motion (notice that Q’s and P’s in generaldescribeGrassmannianscorrespond-

ingto differentAl’.s). :
Have we then found all solutionsof the equationsof motion? Can we repeat

the proof of completeness(given beforehand for the ~pA~ model)? In that
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proof, we first of all showed that the spacesspannedby D~/ and D
1/ were

orthogonal (3.1). A few lines of algebra show that as the covariant derivatives

involve non-Abelian gauge fields, the previous proof does not go through.

Moreover,aglanceat thesolutionswe havefound showsthat

(5.10) AV = (D’ZY° ‘D~Z~0 for in =i +i~ I

for some of them. In fact. A7J vanish/es for all generic solutions, but doesnot

do so for somespecialsolutions.This is true, for example,for solutionsbasedon

one vector f [where the size of the scgap>’ betweensubsetsis related to In

(5.10), for which A~)� 0]. However, it is easy to check that although.4 ~ 0.

their tracevanishes:

(5.11) irA~ = 0 for ui =1 +f~ 1.

Can we show that this is a consequenceof the finitenessof theaction’? It is easy

to showthat

(5.12) trA~)=—trA~~

but so far we havenot succeededin showing that Ti’A~= 0. Thus it is possible

that this condition doesnot have to be satisfied,in which casethereexist further
classesof solutions, in addition to the onesdiscussedabove. We hope that this

question can be resolved one way or another in the not-too-distant future.

6. PROPERTIES OF THE SOLUTIONS-ACTiON AND THE TOPOLOGICAL
CHARGE

We start consideringpropertiesof the solutions by evaluatingthe valuesof

the action and of the topological charge.The expressionsfor their densitiesare

given by

(6.1) S= 2 tr [(D~Z)~D~Z + (DZ)~DZ]

and

(6.2) = 2 tr [(D~Z)~D~Z (DZ)~DZ].

Weshall first provethat

(6.3) tr{[D~Z([3)]~D~Z([3)} = tr{ [DZ[33 +M)]°D Z(f3 +M)~

which is a naturalgeneralizationof

2 pAj 2
(6.4) D =D

- pA +if~ +



CLASSICAL SOLUTIONS01’ TWO-DIMENSIONAL GRASSMANNIAN MODELS 53

found beforefor the CPN_i model.

To show (6.3),we consider

P = Z(13)Z~fif
1’= ~ e~e7,

(6.5)
/3 + 2M —1

P’rZ(~3+M)Z(j3+M)~r~r~ e
1e7

1= /3+M

and

Then,as

D~Z= Z
(6. ) (D_Z)’ = 0_P ‘Z’

we find that the left-handsideof (6.3) is givenby

(6.7) L = tr[(0~PZf°0~PZJ= tr[P’ ~_~‘ ~ = tr[(3~P’P)~3~PP]

while the right-handsideis givenby

(6.8) R =ti’ [(0_P’Z’)~0_P’Z’] =tr [P’’ ~~_~D’] =tr [(3_F’‘P’)~’OP”F’J.

However,usingthe expression(4.18)appliedto 0_P’P’ and then to 3_PP,

(6.9) 0_P”P’ =—3_(P + Q)=— OF— OQ =— aP+aPP=—PaP

we find that

(6.10) R =tr [(F’ O_P)~P’0_F]=tr [O~P’P’ 0_F] =rr(P’ OP 0~P)=L

thusproving(6.3).
Having proved (6.3), we show that the problemof calculatingthe actionhas

beenreducedto that of determining the topological charge.To seethis, we look

first at thecaseM = 2. There,introducing thenotation

(6.11) ID±Z([3) 2 = tr[D~ Z([3)]~ [D~Z([3)]}

we find

S = D~Z([3) 2 + D_Z([3) 2 = D÷Z([3)
2~ID Z(~)2 +

(6.12) + 2 D+ZI ([3_2)12_ 2 ID Z([3— 2)12+ 2ID+Z([3-4)I2-

_2IDZ([3—4)12+ ... + 21D+Z(p)V,
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wherep _ 2 if ~ is evenor p — I if [3 is odd.However,as

(6.l3( D/(p) 2 0

for p — I , 2. we seethat we can rewrite (6. 1 2) as

(6.14) S([3) —~([3) + f([3~ 2) + sf([3—
4( + - . - H- 7~(p(

andin the generalcase(for arbitrary 11)

(6.15) S([3) f([3) + 2s~([3—il) + 2~([3 231) H- .. . + 7~(js.

wherep [3(mod.1/), orAl if [3 (mod il) —

To calculatethe topological chargeof the configuration

(6.16) / ~‘, ‘~+ ‘ ~ 2’ - -~‘,, .~

we observe that, using ti/c cyclic permutation property of the trace, we can

write:

(6.17) s~=2[tr](DZY°D~Z—(DL~D4=2rr)(8 /~ 8~/ 8 /)~8

Then it is a matterof algebrato sb/ow that

//+M 1

(6.18) ~_ s~

1. q.~ 23 8 ~ ~ 2,

As expected,the topological chargedensity is completelyadditive. This property

allows us to rewrite the action density correspondingto the general case as

(6.19) S([3)=2q1 + 2~2+... + 2~ 1 I + “ I’

Next we calculate the integrated values of the topological chargeand of the

action. As

(6.20) 0~~ /// Ii’ 2 = ~ 3/n ‘ 2

the useof thedivergencetheoremin two dimensionsshowsthat

(6.21) fd2vOa ~°I~I
2=~

where I I ‘ I x I~as I x H ~. and where we haveassumedthat p I has no sin-

gularities(andno zeros)exceptthoseat ~.

To calculate the asymptotic beahviour of I 12, it is convenient to use ti/c
wedgeproduct formalism [of (4.5) and 4.6)j. We let, using vectorsof the basis,
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(6.22) h~=g1Ag2Ag3A. ‘‘Ag1,

andthen

(6.23) ~= (h~y°‘h
t.

Moreover,it is easyto seethatup to an overall constantfactor

(6.24) ~

Then, defining

a
0 = 0

(6.25)
= degh ~mod(overall factors)

wefind that [9]

(6.26) Qi =f d
2xq

1=

thus showing that the topological charge and the action of the field (6.16) are
given by

Q = 2ir(a~~m
(6.27)

S =

21r(a/3+M +

Thesearenaturalgeneralizationsof thecorrespondingresults,previouslyobtained

in the(‘pN_i model.
All this discussionconcernedthe genericsolutions.For the specialsolutions,

the discussionis very similar, except that onehas to pay specialattention as to

whether the vectorswhich form Z are all adjacentor fall into groupsof adjacent

vectors separatedby sgapsc. Each group of adjacent vectors(separatedby

sgapss)is treated as a separateunit. For its vectors, the resultsof (6.27) (with

appropriately modified indices [3 and Al) still hold. Then the total topological

chargeand the action for the Grassmannianarejust sumsof such expressions

for eachgroup.

The non-instanton (amid non-anti-instanton) solutions are characterizedby

I Q I ~ 5, and so for them the usual topological argumentsguaranteeingtheir
stability do not apply. Thus they may not correspondto local minima of the
action, and in fact, this is indeedthe case.They areunstable;there exist niodes

of fluctuations around them for which the action decreases.To see thus, we

take a general solution Z for which D~Z~ 0. and considera small fluctuation

4 aroundZ. As a resultof this fluctuation,theZ field is modified to
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(6.28) Z’ =Z~I ~ .~+ ~,

where ~Z = 0 [one can always describethe general fluctuation in the I’orni.

clue to the invarianceof the theory under (‘(‘if) translon/Iations]. The action

for the modified field is given by

(6.29) S’=2tr/d2x[(D[Z’)+D~Z’+(D’Z’)+DZ].

where D’ are the usual covariant derivativeswritten in terms of /‘. Since ti/c

topological charge is invariant under small fluctuations, we can rewrite thus as

S = 2/d2x~(x) + d2x rr[(D’Z’)~D’Z’] =

(6.30)

= S + 4Jd2x J’(~).

where I” (0) calculated to secondorder in the small fluctuation ~ is given by.

= tr[(D Ø)~D0] — rr[~ ‘0(DZ)~DZ]
(6.31)

— tr[(Z~ ‘D 0 + ~ ~D Z)~‘(Z~ - DO + ~ ‘DZ)]

[or we can rewrite !~(0)in terms of expressionsinvolving D~only]. Now, if

we choose

(6.32) 0= cD,~,Z

wherec is a constantcomplexnumber,we canshowthat for oursolutions

1’ = — Ic 12 tr[(D~ Z)~‘D~Z - (DZr - DZJ
(6.33)

—Ic 2tr [(D Z)~D~Z‘(D~Z)~‘DZj

and so is negative definite if neither DZ norD~Z vanish. In derivingthis result.

we usedtheequationsof motion andalso the property that

(3.34) tr[(DZ)~ D,~Z‘(D~Z* -D~Zj= 0

for our solutions. This result is trivial for the (‘~1v 1 case and for the generIc

solutions (where not only the trace but the whole matrix vanishes). For ti/c

special cases,it is true as well, although ti/is time if follows from the fact that

for our special solutions the following property holds if an element of
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DZ+D+Z is non-zero, the correspondingelement of the Hermitian matrix

D~Z~D~Zvanishes.This guaranteesthat althoughD_Z~D~ZD~Z~D~Z�0,
its trace vanishes.It is interestingthat the proof of the relationslike (6.34) is

required if one wants to derive a proof of completenessof solutions.We see

that as S <S, all non-instantonsolutions are unstable,i.e., they correspond

to thesaddlepointsof theaction.

7. BACKGROUND FERMION PROBLEM

Next, we briefly considersolutions of the Dirac-hike equationsin the back-

groundof theGrassmannianfields

(7.1)

where the fermionic field 1,11, like Z, is given by an N xM matrix, and satisfies

(7.2) Z~’,hi=0

(this form of the equationresults from the reduction of the supersymmetric
form of the problem).

It is convenientto resolve~hiinto eigenstatesof

l\
(7.3) 0= .IO~+ .

—ii 1

Thenoneobtainsthe equivalentequations

(7.4) D,0=ZX,

togetherwith the constraints

(7.5)

where ?s, areM x Al matrix-valuedfunctions of x~andx_. To solvetheseequa-
tions, it is convenient to use the expressionfor the GrassmannianZ(~).whose
column vectorsare not mutually orthogonal. In this case,having chosen~, we

consider the M vectors g0, ~ ~/3+~_l~ and orthogonalizethem with
respectto H/3_1 (but not to eachother), defining

(7.6) ~ =g1—g1 ~1J~_~ / =[3.~+ 1,... ,j+Al— 1.

Then, having formed a matrix Z. whosecolumnsare given by g1, we find that

theGrassmannianZ([3) isgiven by

(7.7) Z=Z(M)~
2,

where
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(7.8) Al =2÷2.

This expression is. of course,completely equivalent to (5,2), but it happens

to be moreconvenientin the fermion backgroundproblem.

To solve(7.4), we observethat

D~JlP”
2=O~M112—Mtm”2Af’2Z3~(ZA’l”2)—

(7.9) _2+o(2M.-1)~11/2=o

andsimilarly

(7.10) D_M~12=0.

Thus,setting

(7.11)

we find that as

D+(0+W1/2) = O~(Ø~Al~1/2) 0±Al~112Al I,/’22+.

(7 11)
- ‘O(ZAl 1/2) = (3 Ø~)ji’I 1/2

our equations(7.4) and(7.5) areequivalentto

0+0+ = Zp~
(7.13)

Z~‘0+ = 0.

wherep~aresomeill xAl matrix valuedfunctionsof and x -

To solve theseequations.we usesonic basic propertiesof the projectorsIP,

Ori the subspace‘1, = {g g
0}. Let us denote by P the projector on the

subspacedefinedby

(7.14) Z = )e3,e5 1’’’’’

5/3+M ~

(i.e..P= F/3~~f_
1— 1~_i).

Then

(7,15) 8~~F01=—P’ ~~f’

(which follows from discussionsof Section4). If we now take

(7.16) = ~ ‘/1 ~(~)

where /1 + is an ,\‘ x Al matrix dependenton .v. we see that the constraint is

automaticallysatisfiedand that

(7.17) 8~0~=~

8~11~i/

1)h~ =—P’8~1’-/i’
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which showsthat theequation(7.13) is automaticallysatisfiedwith

(7.18)

In a similar way, we find that

(7.19) 0~(l~ F/3+M_l)’/2(X+)

solvesthe otherequation.

The derived expressionsfor 0 + and 0 canthenbeusedto checkthe Atiyah-
Singer index theorem.Thistheoremrelatesthe numberof independentsolutions

of the backgroundDirac equation(normalized on a sphere) to the topological

propertiesof thebackgroundfield, andis givenby

(7.20) — E = NQ

(where ~ denotesthe numberof helicity ±solutions). In the instanton(anti-

instanton) case,the condition of normalizability on the spheremakes ~_ (~~)

vanish. In the general case,neither number vanishes,and so the theoremis

satisfiedin the non-minimalway.

It is interesting to observe that the solutionsof the fermion background
problem provideus with examplesof negativemodesof the fluctuation operator
discussedin the previoussection.and as such,canbeusedto derivelower bounds
on thenumberof suchmodes.

To see this, let us considerZ given by (7.14), and take as a fluctuation 0

(7.21) 0 = P~1Ii~(x_)M’/
2.

Thenchoosingto write J’(O) in (6.31)in termsof D~derivatives

V(0)=tr[(D~ 0)~D~0]— tr[0’~ 0~D~ZY~D~Z]—

(7.22) —tr[(Z~‘D~0+0~ ‘DZ)~ (Z~D~Ø+0~

— tr[0~0(D~Z)~D~Z]— tr[(Z~ D~0)~Z~D~0],

as

~

But

trL(D+O)~D÷0]—tr[(Z~‘D~0)~Z~D~0]=

(7.23)
=rr[(D~0)~’(1—P)’D+0]=0

as

D~0=—P’~
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due to (7.16). Thus we seethat

(7.24) V(0) = — tr[0’~ Ø(D,
1,ZY~D÷Z] <0.

In a similar way. we canshow that also

(7.25) V(Ø = (1— F~M ~)/, (x~)J’II 1/2) < 0

The conditions on functions Ii + and Ii — are weaker than in the background

Dirac problem case — now werequire that

1012<1.

8. RELATION TO THE HILBERRT-RIEMANN PROBLEM

As the Grassmannmodels are completely integrable,one can analysethem
from the point of view of the associatedHilbert-Riemannproblem. In this

approach.one introducesa linear systemof equationsfor a A’ x A’ matrix-valued

function ‘l’(x+. x, X), where X is an additional complex parameter,such that

the integrabihity conditions for 0 are equivalentto the equationsof motion for
the non-linearproblem in question.In our case. the linear equationsare [10]:

0~0= [0~P.P],~il+x
(8.1) 2

00= [OP,P]O.
I—A

where P denotes the projector describing the Grassmannian(P — LZ’~)‘ The

integrabilityconditionof thesystem(8.1) is then given by

(8.2) [0÷0 F,?] = 0

i.e.. by the Grassmannianequationsof motion. Let us considerfirst the (‘P~~

model case,and let us take the solution s’ = P~’f/ I P~ ‘“I and denote by

PJ thecorrespondingprojector

(8.3)

Thenthe solution of the system(8.1) is given by

4X i5_j 2
(8.4) — fi + Y +

(A—I)
2 ~ A—I

A
which,using ~ P = 1 can be rewritten iii two equivalent forms (up to oser-
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all factors)

~ N 2

~
(A +1)2 ~=/3+i X+l

(8.5)

2 ~—i 2 N1] + ~_ ~ — ~ ~II 0

— o=i +

Thesegeneral 0 solutions thus exhibit either simultaneousfirst-order poles at
A = 1 and A = — 1, or up to second-orderpoles at A = 1 or alternatively at
A = —1.

For the case of the Grassmannians,the form of the solutionsdependson

whether the solutions are generic or special.For thegenericsolution described

by Z03), we haveF = ~ F~whereF0 = e0e~~andthe correspondingsolutions

for 0 are againgiven by

4A /3—1 2
(8.6) ~=fl+

(A--h)
2 ~ A—h

in complete analogy to (8.4). This expressioncan also be rewritten in forms
similar to (8.5). For the special solutions, the situation is more complicated.

Let us discuss,as an illustration, the caseof M = 2 and look at solutionsbased
on onevectorf(i.e.,g

5= O~’f).Thenfor 132>131+ 1

(8.7) P=Ffl+F/3 where

is a solution of the equationsof motion discussedin Section5. The corresponding

solution of theHR problemis given by

8X(A
2+l) /3~—1 2(3X2+1) 4A /32—1

0=1+ ~F+ P+
(A — l)~ ~ (A—i)3 ~ (A—i)2 ~=~+ 1 0

2 4A /3—1 2 2
(8.8) +—F ~l +

(A—h)2 A—i ~ X+ I ~h

4A N

- __ y_~F
(A+l)2 u~+i

and we note that this solution exhibitspolesof eitherup to secondordersimulta-
neously at A = 1 and A = — I, or up to fourth order at A = + 1 or alternatively
at A = — I. For in > 2, it is easy to display special types of solutionswhich
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lead to still higher—orderpolesat \ ±I 11/ . Il/c orderof thesepolesis related

to the numberof gaps in ti/c group of vectors used ii/ the col/stI’UctiOn of the

solution,

Let us point out at thus stagethat the techniqueof the I~’Ilproblem. as usually

applied to non—linear edlLlatlOns. involves ai~ans’Jt7 l’or [3 11/ terms of only lii’s!—

order poles. As seenabove,the exampleof (1(11, ,\). wi/crc relations are known
by other techniques.shows Il/at a 1/301-c complicatedansatzma\ lead to dift’erei/t

andinterestingkinds of solutions.

Let us finish this sectionby noting that in the traditional approachto the HR

problem. one tries to determinenew solutions form the old ones,amid attempts

at the same time to determine new field configurationswh1ici’l would automati-
cally solvetheir non-linearequationsof motion. This is doneby setting

(8.9) ~°X) = x(X)O°°(X)

and then trying to solve the resultant equation for x(X). When we specialize

ti/is procedureto our case,and take for [3Old) A) some known solutionsdiscussed

above,we do obtain linear equations for x(X): however, they seemto be as 1/ard

to solve as tue original equations for [3(X). No particular simphfication results

from following the traditional line of approachbasedon Eq. (8.9).

9. CONCLUSIONS AND OPEN QUESTIONS

Clearly, although some understandingof the structureof ti/c classicalsolutions

I1as been found, thereare still many unansweredquestions.As far as theclassical

solutions are concerned,the main outstanding question is the completenessof

the solutions in more generalGrassmanniancases.Then one would like to under-

stand quantum corrections to tb1ese classicalresults. Of course, the instability

of the solutions, and hence the existence of negative I//odes, complicates the

discussion.but presumablyone should be able to find an appropriateanalytical

continuation. However, this has turned out to be quite difficult. it is very difli-

cult to determinethe spectrum of the fluctuation operator(or evei/ be certain

as to the exact number of negativemodes), and in one sn//pie case,vvllel/ the

spectrumis known, it seemsratherdifficult to dealwith zeromodes,

In the approxil/lation of consideringonly instanton and anti —illstanlol/ 501/I—

lions. Berg and Liischer [11] and l-’ateev. 6 i’olov and Sehiwai’z II 2 1 showed that

ti/c quaii turn corrections to ti/c classical solutions can be described11/ terms oh

a gasof instanton quarks. It would lie interestingto see svliat ill/pact thecollec-

tions due to non—instantonsolutions would haveone the propertiesof tins gas.

Perhapsas a result of tI/ese correctionsthe propertiesof thegas in all (~‘ (11.
models would become iiioie alike. thus providing sonic coiulectIoii with ti/c
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resultsobtainedin various1/N expansions.

Are anyof the resultsfound in Grassmannianmodelsalso truein other models?

Can one generalize the techsniquesdiscussedto studies of other models, say,

CP’~’~in 2 + 1 dimensions, or non-Abelian gauge theories? The preliminary

answerto the first questionseemspositive; the answerto the latter oneis that

we do not know.
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