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Classical solutions
of two-dimensional
Grassmannian models

W.J. ZAKRZEWSKI (*)
CERN - Geneva

Abstract. We present classical solutions of two-dimensional Euclidean Grassman-
nian o models {harmonic maps} and discuss some of their properties.

1. INTRODUCTION

It is generally believed that non-Abelian gauge theories are likely to play an
important role in any field theoretical description of the theory of elementary
particles. In particular, weak and electromagnetic interactions are described by
such a theory, and it is generally felt that this is also the case for strong interac-
tions. Gauge theories, in the case of an SU(2) symmetry group, are defined in
terms of a Lagrangian density:

(1.1 therliw
where
(1.2) an: auA,,—al,A“-k [A#,AU].

and where A“ is an SU/(2) valued vector function of a Euclidean four-dimensional
space-time.

(*) On leave of absence from: Dept. of Mathematical Sciences, University of Durham,
Durham DH] 3LE, United Kingdom.

This article isbased on lectures given by the Author during the Trimester on Mathema-
tical Physics at the Stefan Banach International Centre, Warsaw, Sept.-Nov. 1983.
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One of the main stumbling blocks in making any progress with these theories
is our lack of understanding of how to perform functional integrations

»

(1.3) D[A“]e'«"dd"'-ﬂAu)@(Au)

in terms of which most quantities of the theory are given. One line of approach
is to attempt to calculate these integrals numerically. As. strictly speaking, func-
tional integrations involve infinite numbers of point integrations. such numerical
approaches unavoidably involve various approximations in the form of discretiza-
tion of the problem, and then further approximations associated with estimating
values of the resultant integrals — now finite in number. but still far too many.
One resorts to all sorts of sampling techniques, such as Monte Carlo methods, etc..
the results of such numerical attempts are encouraging. but so far not conclusive.
When one tries to calculate integrals like (1.3) analytically. one finds that the
only viable line of approach available at present is based on the expansion around
stationary points of the action and then perturbation thcory of the resultant
effective theory. To proceed in this way. onc has to determine first all stationary
points of the action. They are, of course. given by the Euler-Lagrange equations
of the theory, which are:
(1.4) D“FM: a“}:w» [Au. 1‘)‘“'] =0.
When written in terms of the gauge potential A4 . these equations are highly
one-linear, second order partial differential equations. As is well known, due
to the Bianchi identity

(1.5) D“*FM:O
where

- ] i
(1.6) = T Cpastap

a subclass of solutions of Egs. (1.4) is provided by the solutions of the first
order equations (called «self-duality » equations)
S * I
(1.7) Foo=x%F .
This last equation can be thought of as coming from

(1.8) L=tq

where
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(1.9) g(x)y=1r F“V*FM

is the density of the topological charge.

We are only interested in those solutions of equations of motion for which
the action is finite, as it is only for them that we know how to set up the pertur-
bation theory of fluctuations around them. This fact effectively forces Au to
become pure gauge at infinity and is responsible, in this case, for the existence
of the topologically conserved quantity

(1.10) Q:Id“_x q(x).

All finite action solutions of Eq. (1.7) have been implicitly, though unfortunately
not explicitly, determined by Atiyah, Drinfeld, Hitchin and Manin [1]. In the
case of the plus (minus) sign in (1.7), the corresponding finite action solutions
are called instantons (anti-instantons). A simple application of a Bogomolnyi
bound shows that the instanton and anti-instanton solutions correspond to the
local minima of the action. Hence, these solutions are stable under small fluctua-
tions. Even though all finite action solutions of (1.7) were found, it is still not
clear whether there are any further solutions of (1.4) which are of finite action,
but which are not solutions of (1.7). Some partial negative results exist, but there
is no proof, even for the SU(2) theory. Had such non-instanton solutions existed,
they presumably would also have had to be included in the stationary point
calculation of (1.3). We still do not know.

Moreover, the question of calculating the fluctuations about the instanton
solutions has turned out to be a hard mathematical problem. Even in the simplest
case of the functional integral (1.3) [0(4) = 1], only a partial answer is known.
Clearly, not many terms will be calculated in the perturbative scheme mentioned
above. Thus it is interesting to know that there exist simple two-dimensional
models which bear some resemblance to four-dimensional non-Abelian gauge
theories, and in which some of these questions can be partially answered. These
models include the CPY™! model originally found by Golo and Perelomov and
Eichenherr [2], and also its non-Abelian generalizations [3] (so-called complex
Grassmann models). They are essentially free field theories with non-linear
geometrical constraints. Many of their properties stem from their geometrical
structure. They are known to have an associated linear scattering problem, name-
ly, their equation of motion can be written as an integrability condition of a
set of linear equations with a free parameter. They have an infinite set of con-
servation laws, and these conserved quantities generate an infinite dimensional
algebra of dynamical symmetries. Thus, some of their properties may be related
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to these additional symmetries of the models and hence not be necessarily a guide
to what happens in non-Abclian gauge theories. On the other hand. these models
are also interesting per se¢; in addition, recent work on supergravity has shown
that some sectors of this theory are effectively described by o models very similar
to the models we will discuss in the next sections {4]. Morcover. it appears that
these models may even be directly relevant in some specific physical cases.

2. CPN-! MODEL. COMPLEX GRASSMANNIAN ¢ MODELS AND THEIR
INSTANTON SOLUTIONS

Let us denote by G(M,N) the complex Grassmann manifold. which can be
written as a quotient space

U(N)
UM) x U(N —M)

2.1) GWM.N) =

where U(K) denotes the group of K x K unitary matrices. Let g = g(x). where
X o= (X .\'2) € R?, be an element of U(N) which we decompose as

g=1(Y)
where
(2.2) L= .. .. VAN Y=(Zy oo Ly
in which each Z,' i=1..... N) is an N-component column vector. Then the
unitarity of g equivalent to the fact that these vectors are orthonormal to cach
other
(2.3) Z,-Zp =5,

The Grassmann models are defined by considering the /V x M matrix Z as a dyna-
mical variable, together with the constraint [which comes from (2.3)]

(2.4) z+vz =1,

where IM denotes the M x M unit matrix and * denotes Hermitian conjugation.
The Lagrangian density and the action of the model are defined as

(2.5) L =D, 2)'D,Z}, S = [d*xL,
where the covariant derivative Dy is defined by
(2.6) D V=0 V¥—-V¥4g

M M M

in which A“ is a composite gauge potential defined by
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— 7+ +_
(2.7) A,=Z BMZ, A= A,
The above-given Lagrangian is invariant under local U(M) transformations

Z-7'=7h where h=h(x)eUM),
as then
" Nt g+ +

(2.8) D,z = (D#Z)h, (D“Z Y =h (D”Z)
and also under global U(N) transformations
(2.9) Z-7'=gZ, g € U(N), g = const.

In the special case when M =1, the above model is called the CPY~1 model,
as the complex Grassmann manifold in this case is equivalent to the complex
projective space. The CPY~! model is therefore described by a complex N-
component column vector, together with the normalization condition [Zz|=
=Z%-Z=1. It possesses the Abelian U(1) symmetry and its composite gauge
potential Au is a pure imaginary function.

The Euler-Lagrange equations of the Grassmannian models, called — in what
follows — the equations of motion, are given by

+ —
(2.10) D,D,Z+Z(D,Z)*D,Z=0

together with the constraint (2.4).
As in the gauge theory case, one can introduce a topological charge density

(2.1 g(x)=1ice

and then consider equations coming from the relation (1.8) (L = # g, selfduality
equations). They are given by

2,11(Z*2,2)

B

(2.12) D,Z=tie, DZ

and correspond to Eq. (1.7). Their finite action solutions are again called instan-
tons and anti-instantons respectively. To obtain a better insight into the proper-
ties of these models, it is convenient to change the Euclidean variables (x,y)
to holomorphic and antiholomorphic variables

(2.13) X, =Xxztiy

and then rewrite all expressions in terms of these variables. We find
L=21r[D, Z)+D+Z +(D_Z)tD Zj

(2.14) +

q=2 tr[(D+Z)+D+Z — (D 2" D_Z])

where the derivatives denote the covariant derivative (2.6), in which the differen-
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tiation is performed with respect to the x, variables. As

1
(2.15) D, D 1¥v=—Vg
-

the equations of motion (2.10) can be rewritten as
(2.16a) D_D+Z+Z(D+Z)+D+Z:O

or equivalently

(2.16b) D D Z+ Z(D_Z)*D Z=0

and the self-duality equations (2.12) are given by
(2.17) D, Z=0.

The solutions of these equations in the CPY ! case were already given in the
original paper of D’Adda et al. [5]; for the general Grassmannian models they
were given by A. Macfarlane [6]. In the CPY ~! case they are given by

(2.18) Z=1i|f].

where, in the instanton (anti-instanton) case, the f vector is a function of only
x,(x_). The finiteness of the action imposes conditions on the components
of f — they have to be rational functions of their argument. However. due to the
invariance under an overall factor multiplication [due to (2.8)]. it is sufficient
to consider only polynomial components of f (with no over-all factors). This
was found already in the original paper of D’Adda et al. [5]. in which a detailed
discussion of the instanton (and anti-instanton) solutions was given.

In analogy with (2.18), we find that an instanton solution of the general
G (M, N) model is obtained from a set of M linearly independent holomorphic
vectors f] .. jM properly orthonormalized in order to satisfy the constraint (2.4).
Let us denote by Z the N x M matrix consisting of the holomorphic vectors
7= (f] .. 'fM)’ and define an M x N Hermitian matrix M by

(2.19) M=2%7.

Because of the linear independence of the vectors M is positive definite and
invertible. The Hermitian square root matrices M2 and A/~V2 exist and are
unique. Now it is easy to see that

(2.20) Z=ZM)y 2

which is a simple generalization of (2.18), satisfies the instanton equations as well
as the constraint (2.4).
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We see that, in contradistinction to the gauge theory case, the form of all
solutions to the first order differential equations (2.17) is very simple and expli-
cit, and this suggests that it may not be too difficult to find finite action solu-
tions of Eq. (2.16) which are not solutions of (2.17).

Such a construction of all finite action solutions of Eq. (2.16) for the cp¥-!
models and for a large class of solutions of general Grassmannian models will be
given in the next sections, where we will also discuss their proporties. This
construction arose out of a work by Borchers and Garber, who have considered a
similar problem in the case of the O(N)o models. This work, with several modifi-
cations, could be adapted to the Grassmannian case, where it allows for an elegant
mathematical pattern and brings out the geometry of the problem.

Let us finish this section by reformulating the model in a gauge invariant way,
the formulation which is often more convenient than the more conventional one
discussed so far. To do this, we introduce an N x N projection matrix P, defined
by

M
(221) P=zz*=Y 2z}, P=P* =P

i=1

The Lagrangian takes the form

(2.22) L=1tr(,Po,P)

together with the constraint P2 =P, and the equation of motion is given by
(2.23) [8,9,P,P]=0.

In this formulation, the only difference between different Grassmannian models
resides in the rank of P.

Finally, the first order (self-dual) equations (2.17), when written in terms of
the projection matrix P, are given by

(2.24) oP P=0 and P-oP=0
or equivalently

(2.25) P-3,P=0 and 3,P-P=0.

3. CPN"1CASE:ISOTROPY AND GENERAL SOLUTIONS

First of all, we consider the CPY¥~! models, for which we are able to prove
some identities (called isotropy conditions by pure mathematicians) which
allow us to determine all finite action solutions of the equations of motion.
We will then show that similar identities do not necessarily hold in more general
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Grassmannian models, thus leaving open the question of the completeness of
the derived solutions.

To construct general solutions of the equations of motion, we first study
consequences of their existence. If Z (x,.x ) provides such a finite action solu-
tion, then we can show (isotropy condition)

(3.1) Afl=D'Z, -D]Z =0  for m=i+/>1

It is clear that A} = Aj, = 0. Moreover, the finiteness of the action and the
conservation of energy momentum give Af‘ , = 0. The general case can be proved
by induction. We refer the reader, for details of this proof, to Ref. [7]. Here we
will state only that one shows first that B_AZ.’ =0, and then uses a variant of
Liouville’s theorem to prove the vanishing AI’;’

Equation (3.1) shows us that, for a given Za‘ we can construct two subspaces
of CV:

mutually orthogonal and orthogonal to Z_. Then one considers the vector space
ﬁK:{Zu. HK} and shows that one can find in it a holomorphic N component
vector f, (i.e., 8_f = 0), expressed as a rational function onQ and its derivatives
[again, for details, see Ref. [7]]. It is not difficult to show that f, must be mero-
morphic; moreover, as solutions to the equations of motion are¢ invariant under
the conformal transformation X, - 1/x+, we see that f, must be rational.

Now it is possible to show that A, is spanned by £,. d,f,..... akr, ...
and that it is possible to express Za in terms of this basis. This way we can show
that if we write

Z&
(3.3) Z=—

1Z]

-~ K71 -
(3.4) Z,=0Xp— Y Mple.M, |ols
il=0
where
. _al 4. i . o -

(3.5) M, =0 f-81f . idl=-01,...K—1.

It now remains to check that indeed Z_ of (3.3) solves the equations of motion.
This we can do in several ways, we can show (7] that both Z and D D Z are
in H and are orthogonal to  _| — thus they must be proportional:
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(3.6) DyD. [ =\Z,

Then, a few further lines of algebra show that the z, solves the equations of
motion. Alternatively. we can reformulate our construction, then the proof
is even simpler. This we will do in the next sections.

4. ALTERNATIVE FORMULATION.
GRAMM-SCHMIDT ORTHONORMALIZATION

Consider a vector 0 # g € (™, and define an operator P, by
4.1) P g=203,8—

and define its repeated action as

(4.2) PRg=p (PE-1p).

Then it is a matter of algebra to show that Za of (3.4) is in fact given by
(4.3) zZ, =Pk,

To proceed further, we note the following useful properties of Pff (when f
is an analytic vector):

1. PKf-Plf=0 if %K
pkr|?
2. 3_(PXfy=-—pPk-1f —l————

it

ﬁ‘;‘t)zﬁﬂ
l

0 - -
A[pEigp ] pEipp

(4.4)

4. PNf=0.

These properties either follow directly from their definition or are very easy
to prove. In proving them, it is useful to introduce wedge products of f and
its derivatives. In this way, we define

(4.5) WO =fANo, fA...A3Lf i=0,...,N—1
and then it is easy to check that
(4.6) PRf~ k-t pk

where the dot product in (4.6) denotes the summation over all indices of #X~1
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and all but one of 1%, If fis analytic, so is it @, although it is an element of a
larger-dimensional space. Thus, (4.6) suggests a possible interpretation for the
non-instanton (K # 0) solutions — they correspond to mixtures of instantons
and anti-instantons. Both instantons and anti-instantons are elements of larger-
dimensional space and are of special form [Eq. (4.5)]. This special form allows
their mixtures (4.6) to be elements of V. corresponding to the solutions of
the equations of motion of the CPY ! model. Thus, in a way, (4.6) shows that
all non-linearities of the CPY~! model are associated with the dimension of its
manifold and, when properly reinterpreted, the equations of motion are just the
Cauchy-Riemann relation for vectors #”_ just as in the instanton case. However.
the vectors #? have to have their rather specific form (4.5).

The orthogonality properties (4.4) of the Pff vectors show that one can
think of them as being obtained from the sequence of holomorphic vectors

(4.7) A T A LS A LY A

through the Gramm-Schmidt orthogonalization procedure. Moreover, we sce
that when these vectors are normalized, they provide solutions of the CPN !
model equations of motion. Let us denote by

(4.8) R ST Y

the vectors obtained from the sequence (4.7) by the process of Gramm-Schmidt
orthonormalization. Then, as Sasaki [8] has shown, one can give a simple proof
that any element of the sequence (4.8) solves the CPY~! model equations of
motion. To do this, we go to the projector operator formulation of the model.
We take, say, the j™ element of the sequence and consider the corresponding
projector

_ +
(4.9) P= e e

We also consider another projector

j—1
(4.10) 0= Z ey er .

K=1
Then, using relations
(4.11a) d_e,=e¢,_ (e, 13 ¢)+elefd e)
and
(4.11b) a+€z:€1+1("1++1a+01>+<’1(01+ a,¢)

which follow from (4.4), we can establish several identities satisfied by P and Q.
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Considering  as a projector describing an instanton solution of G(j — 1, N),
we have

(4.12) a_0 Q=0

In the same way, P + Q describes an instanton solution of G (j, N) and so satisfies
(4.13) o(P+Q)-(P+Q)=0.
However, due to (4.11), we have

4.14) o_P 0=0

which allows us to derive, from (4.13) and (4.12),
(4.15) o P-P+3 Q P=0.

However, from (4.11), it also follows that

(4.16) P-38,0=00

and, by Hermitian conjugation

4.17) a_Q-P=0_¢Q

which permits us to rewrite (4.15) as

(4.18) o_P-P+0_Q=0.

If we now take the Hermitian conjugate of (4.18),
(4.19) P-0,P+03,0=0

and consider the combination of a+ of (4.18) — d_ of (4.19), we obtain the
desired equation

(4.20) (3,9 P,P1=0

which completes the proof that the equation of motion is satisfied.

This way of checking whether a given vector satisfies the equations of motion
may appear not to be the most convenient choice when CPY¥~1 models are
studied; it is, however, very useful for the more general Grassmannian models.

5. GENERAL GRASSMANNIAN MODELS

When we consider a more general Grassmannian model, say, G(M, N), we find
several classes of solutions [9]. In particular, we expect that the most generic
solutions will depend on Af arbitrary analytic vectors f . .. f;,. From them, by
the generalization of the construction of the previous section, we can construct
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the required solution. We proceed as follows. We choose integers Kor=1....4
Vv
such that A=K,z . 2HK,=1 and such that X A, N Then we consider
the N vectors o
N .
(5.1) 3l 1 =00 K,—1. i=1.....1

which. except in special cases, will span (V. We denote these vectors by g ..

B=1...N choosing a certain order. Next we define the subspaces // = 188
(with HO = ¢ and IlJ =V for B = \) and perform a Gramm-Schmidt orthonor-
malization

‘:g:g;*gniu,;f]* g=1.....N
(5.2) o

¢ =c./ el

b ) I

Then the statement is that the Grassmannians Z(8). 5 =1 ... N — M + | defined
by the orthonormal vectors ¢ ... ... ¢ are solutions of the equations of

i + M1

motion provided that the vectors{c¢ | and thercfore {g . are chosen in such an

order that for all g

(5.3) o M I, .
This condition is fulfilled. for example. by the choice jg (=17 .. Iy 0.1,
Sy 0,y 63,:’,]'1. ...y but, of course. other permutations of this particular

order also fulfil (5.3), such as starting the sequence g} with a certain number
of derivative vectors 8;]’1 and then continuing with f,. f,. .. .. and further on
with 84]’1. etc. To show that the Grassmannian Z(§) satistics the equations of
ity
on #{ _,. Onc then repeats all the arguments of the last part of the last section

motion. one introduces £, the projector on 1. and Q. the projector
[observing on the way that @ describes an instanton of Gip — . Ny and £ + Q
an instanton of G{p + M — 1. N}

Having found these solutions ot the cquations of motion based on M arbitrar
analytic vector functions. we may ask whether there are further solutions of the
G(M.N) models. It furns out that the answer to this question is positive: the
general structure of these further solutions is such that they are all determined
in terms of a smaller number of arbitrary holomorphic (with polynomial com-
ponents) fi... .. Tage with A" <. The vectors of basis | g | are so chosen that
8+11;C 1[‘H A
constructed in the same way as before and then partition this ordered sct into

for any . Then one can form an ordered sct of vectors ¢

a sequence of subsets, each of length at least A/’ (with the exception of perhaps
the first one). Then. taking M vectors which are given by a collection of such
subsets gives a Grassmannian which satisfies the cquations of motion of the
G(M,N) model. One can easily give examples of such special solutions. For
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instance, if we take M' = 1, then all vectors of the basis are given in terms of
one vector f. Then a+H5CHc+1
{e, ; provide a solutions. In the case of two holomorphic vectors f.f, with,
say, g, ={/.5,, 0.1, 8, f,.. . .1, Le., such that a+HﬁC H,, . the sets {el,e

€,.¢ orie

and any M distinct vectors from the sequence

30 €45 €. €4 are solutions corresponding to M = 4. ’

To prove that the cquations of motion are satisfied, we observe that if we
denote the corresponding projector by P and the complementary projector
by Q (i.e., such that P + Q is a projector on the surface spanned by all the vectors

of the basis up to the last vector in the sequence defining the Grassmannian),

we have
o (P+Q)- (P+Q)=20
(5.4)
Q-P=P-0=0
and also
P+Q)y-0,0=0,¢0
(5.5) ;
o (P+0Q)-P=0
from
(5.6) a+HﬁCHﬁ+M,.
Thus
(5.7) 0o P P+0Q0—0Q-0=0

and we see that
(5.8) [0, aAP.P]=[8+ a_0Q,0]

and we find that P is a solution if ¢ is aiso one. To prove that @ is a solution, we
repeat this prescription, this time treating ¢ as our previous P and introducing
a new complementary Q'. We find

(5.9) [0,0.0.01=1[0,0 Q.0Q]

thus showing that the problem is reduced to proving that Q' satisfies the equa-
tions of motion (of a corresponding Grassmannian). It is easy to convince oneself
that the final Q in this chain of steps describes an instanton solution, proving that
all intermediate Q's (and P's) are also solutions of the corresponding equations
of motion (notice that Q's and P's in general describe Grassmannians correspond-
ing to different M's).

Have we then found all solutions of the equations of motion? Can we repeat
the proof of completeness (given beforehand for the CPY~1 model)? In that
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proof, we first of all showed that the spaces spanned by D! 7 and D'Z were
orthogonal (3.1). A few lines of algebra show that as the covariant derivatives
involve non-Abelian gauge fields, the previous proof does not go through.
Moreover, a glance at the solutions we have found shows that

(5.10) A= (DIZY DIZ#EO  for  m=itj=]

for some of them. In fact. AI.’}’ vanishes for all generic solutions. but does not
do so for some special solutions. This is true, for example. for solutions bascd on
one vector f [where the size of the «gap» between subsets is related to 0 in
(5.10), for which 4,’7 # 0]. However. it is casy to check that although A4 :7 #+ 0.
their trace vanishes:

(5.11) rrA;.}’:O for m=i+j=1.

Can we show that this is a consequence of the finiteness of the action? 1t is easy

to show that

o] Logmtl o gm+ ]
(5.12) AT = g An

but so far we have not succeeded in showing that TrAZ? = 0. Thus it is possible
that this condition does not have to be satistied, in which case there exist further
classes of solutions. in addition to the ones discussed above. We hope that this
question can be resolved one way or another in the not-too-distant future.

6. PROPERTIES OF THE SOLUTIONS-ACTION AND THE TOPOLOGICAL
CHARGE

We start considering properties of the solutions by evaluating the valuecs of
the action and of the topological charge. The expressions for their densities are

given by

(6.1) S:21)‘[(D+Z)+D+Z+(DWZ)*D‘Z]
and

6.2) =21 [(D+Z)+D+Z — (D _2)*D Z].

We shall first prove that

(6.3) tr{lD, ZBTD, ZB) = tr {[D_ZB+M)]"D_Z(B + M)
which is a natural generalization of
,P]\'-%]f 2 PA] V|2
+ +
o o[ Z ] ()
PET Tk
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found before for the CPY~! model.
To show (6.3), we consider

B+ M-1
P=Z®ZB) = ) eet,
i=p
(6.5)
g+2M-1
P =Z@+MZE+M)T= Y o
i=p+M
and
-1
Q=) eef,
i=1
Then, as
D, Z=3,P Z
(6.6)

D_Zy=9_P -2’

we find that the left-hand side of (6.3) is given by

(6.7) L=tr{(0,PZ) 3, PZ)=1tr(P-0_P- 3 _Pl=tr[(3,P P)"3 PP)
while the right-hand side is given by

(6.8) R=tr{(3_PZ"y* 0_PZ'|=tr[P'-3,P"-3 P')=tr[(3_P'-P')" 0_P"-P').
However, using the expression (4.18) applied to 3_P'P’ and then to 3_PP,

(6.9) 9_PP=-3(P+Q)=—3P-3Q=-3P+3PP=—P3 P

we find that

(6.10) R=tr{(P-0_P)*P-3_P)=tr[8, P-P-3_Pl=tr(P-0_P-3, P)=L

thus proving (6.3).

Having proved (6.3), we show that the problem of calculating the action has
been reduced to that of determining the topological charge. To see this, we look
first at the case M = 2. There, introducing the notation

(6.11) |D.ZB) > =1r{[D, Z(®)]" [D, Z(B)}}
we find
S=|D,ZB) | +|D_ZB)|*=|D,ZB|*~|D_Z@B)|* +
(6.12) +2|D,Z|B-DPP-2|D_ZB-D|P+2|D, ZB-4 |-
—21DZB-4 1P+ ... +2|D, Z(p)|,
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where p = 2 it fiseven orp = 1if §is odd. However, as

(6.13) D _Z(p)|P=0

for p =1, 2. we sec that we can rewrite (6.12) as

(6.14) SBEr=qgBr+2¢B—2)+2¢B—h + ...+ 2qg(p)
and in the general case (for arbitrary /)

(6.15) SBY=qBr+2qB—M)y+2q(B—2M)+ ...+ 2q(p)

where p = 3 (mod M), or M if § (mod M) = 1.
To calculate the topological charge of the configuration

(6.16) A O I € 1)

we observe that. using the cyclic permutation property of the trace. we can
WIite:

(6.17) c{,zl[/r{([)‘(rl)*])Jer(l) 2D Z)=21r((8_ 2V, 2 —0 L) o /)
Then it is a matter of algebra to show that

S+ M-l
(6.18) 4 = V ¢ q,l.:laA d In

Ja—
=5

2

e,
1

As expected, the topological charge density is completely additive. This property
allows us to rewrite the action density corresponding to the general case as

(6.19) SB)=2q,+2q,+ . +2q, ;ta tq, Tty
Next we calculate the integrated values of the topological charge and of the
action. As
b) ! - 2
(6.20) 0,0 In|p|°= Z dudulnkp|-

the use of the divergence theorem in two dimensions shows that

(6.21) /dz.\'a+a ln|p|2:1ra

4

where |p| —|x|* as | x [> oo, and where we have assumed that |# | has no sin-
gularities (and no zeros) except those at co.

To calculate the asymptotic beahviour of
wedge product formalism [of (4.5) and (4.6)]. We let. using vectors of the basis,

-~ 2 . . .
(’l.l", 1t 1s convenient to use the
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(6.22) RO =g Ng,AgyA. .. Ng;.
and then
(6.23) ey~ (P .

Moreover, it is easy to see that up to an overall constant factor
(6.24) | €517 = P2 |hP 2
Then, defining

o, = 0
(6.25)
o, = deg h?mod (overall factors)

we find that [9]
(6.26) 0, :jdzxqi =2m(— o)

thus showing that the topological charge and the action of the field (6.16) are
given by

Q0 =27n(x o

g+M-1" fH)

6.27)

S=2mag, p

+ ozﬁﬂ).
These are natural generalizations of the corresponding results, previously obtained
in the CPY =1 model.

All this discussion concerned the generic solutions. For the special solutions,
the discussion is very similar, except that one has to pay special attention as to
whether the vectors which form Z are all adjacent or fall into groups of adjacent
vectors separated by «gaps». Each group of adjacent vectors (separated by
«gaps») 1is treated as a separate unit. For its vectors, the results of (6.27) (with
appropriately modified indices § and M) still hold. Then the total topological
charge and the action for the Grassmannian are just sums of such expressions
for each group.

The non-instanton (and non-anti-instanton) solutions are characterized by
|Q|=# S, and so for them the usual topological arguments guaranteeing their
stability do not apply. Thus they may not correspond to local minima of the
action, and in fact, this is indeed the case. They are unstable; there exist modes
of fluctuations around them for which the action decreases. To see this, we
take a general solution Z for which D, Z 3 0, and consider a small fluctuation
¢ around Z. As a result of this fluctuation, the Z field is modified to
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(6.28) Z'=ZV1—9¢t -6+ 0.

where ¢1tZ = 0 [one can always describe the general fluctuation in the form.
due to the invariance of the theory under [7(M) transformations]. The action
for the modified ficld is given by

-

(6.29) S = :zrfdlx[(D;z’y D.Z'+D'Z)-DZ'].

where D; are the usual covariant derivatives written in terms of Z'. Since the
topological charge is invariant under small fluctuations, we can rewrite this as

»

S’ = Z/dz,\‘z{,(.\‘)+ 4Id2x (D' ZHY'D'Z'} =

(6.30)

»

=5+ 4Jd2.\' (o).

where F(¢) calculated to second order in the small fluctuation ¢ is given by.

Vo) =1r[(D ¢)" D ¢l —1r(p* - ¢(D 2)' D 2]

(6.31)
—r((ZY-D o+ D )t (ZT-D ¢o+¢t D 7))

[or we can rewrite V(@) in terms of expressions involving D, only|. Now, if

we choose

(6.32) p=€eD Z

where € is a constant complex number, we can show that for our solutions
I"=—]e |2tr[(D+Z)+ "D, Z- (D Zy"-D Z]—

(6.33) 5

—€] r{(D_Z)* "D Z- (D+Z)+ -D 7]

and so is negative definite if neither D_Z nor D Z vanish. In deriving this result.
we used the equations of motion and also the property that

(3.34) Ir[(DiZﬁ-D+Z-(D+Z)+'D+Z]:O

for our solutions. This result is trivial for the CPY ™1 case and for the generic
solutions (where not only the trace but the whole matrix vanishes). For the
special cases, it is true as well, although this time if follows from the fact that
for our special solutions the following property holds - if an clement of
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D_Z+D+Z 1S non-zero, the corresponding element of the Hermitian matrix
D+Z+D+Z vanishes. This guarantees that although D_Z+D+Z D+Z+D+Z +0,
its trace vanishes. It is interesting that the proof of the relations like (6.34) is
required if one wants to derive a proof of completeness of solutions. We see
that as S’ < S, all non-instanton solutions are unstable, i.e., they correspond
to the saddle points of the action.

7. BACKGROUND FERMION PROBLEM

Next, we briefly consider solutions of the Dirac-like equations in the back-
ground of the Grassmannian fields

(7.1) Py —ZZ7 Py =0,
where the fermionic field ¥, like Z, is given by an N x M matrix, and satisfies
(7.2) Zt-y=0

(this form of the equation results from the reduction of the supersymmetric
form of the problem).
It is convenient to resolve ¥ into eigenstates of Ys!

1

v

(1.3) w:(ijw++

Then one obtains the equivalent equations
(7.4) D y* =2\,

together with the constraints

(7.5) ZT-y*=0

where A, are M x M matrix-valued functions of x_ and x_. To solve these equa-
tions, it is convenient to use the expression for the Grassmannian Z(f), whose
column vectors are not mutually orthogonal. In this case, having chosen §3, we
consider the M vectors 85 8ai1--Bgp o1 and orthogonalize them with
respect to H;_, (but not to each other), defining

(7.6) § =g —gVHy s J=B.B+1....j+M—1.

Then, having formed a matrix 2. whose columns are given by g;> We find that
the Grassmannian Z(f) is given by

(7.7) Z=ZM)y V2,

where
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N

(7.8) M=27%27.

This expression is. of course, completely equivalent to (5.2). but it happens
to be more convenient in the fermion background problem.
To solve (7.4), we observe that
D MYV =3, MMM 1273 (ZM 12—
(7.9)

—Z*a (ZM HmMIP=0
and similarly

(7.10) D M V=0

Thus, setting

(7.11) yr=¢ M2

we find that as

Di((I):Mi U2y -~ at(¢3Mt 2y ‘I’:M: Yapg 127+

(7.12) - )
3, (ZM V) = (3, ¢, )M* 12

our equations (7.4) and (7.5) are equivalent to

a: ¢z = Zl":
(7.13)
zZ* ¢, =0,
where u, are some M x M matrix valued functions ofx, andx_.
To solve these equations, we use some basic properties of the projectors IPMJ
on the subspace H, = {g]. c ,gd}-. Let us denote by P the projector on the
subspace defined by

(7.14) Lo=He 5 g Coom 1)
(i.e..P:]P5+A,,_1—IPﬁ_])-

Then
(7.15) a+IP,5 1:—‘})~a+1J

(which follows from discussions of Section 4). If we now take
__, . + ..
(7.16) ¢+‘]PJ T

where 7% is an N x M matrix dependent on x_. we see that the constraint is

automatically satisfied and that

(7.17) 9,6, = (’djl’b, gt =—=preo, P
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which shows that the equation (7.13) is automatically satisfied with
(7.18) u+=—Z+’a+P~h+.

In a similar way, we find that

(7.19) ¢_=(1 =Py ) (xy)

solves the other equation.

The derived expressions for ¥ * and ¥~ can then be used to check the Atiyah-
Singer index theorem. This theorem relates the number of independent solutions
of the background Dirac equation (normalized on a sphere) to the topological
properties of the background field, and is given by

(7.20) £, —f =NQ

(where ¢, denotes the number of helicity # solutions). In the instanton (anti-
instanton) case, the condition of normalizability on the sphere makes £_ (£ )
vanish. In the general case, neither number vanishes, and so the theorem is
satisfied in the non-minimal way.

It is interesting to observe that the solutions of the fermion background
problem provide us with examples of negative modes of the fluctuation operator
discussed in the previous section, and as such, can be used to derive lower bounds
on the number of such modes.

To see this, let us consider Z given by (7.14), and take as a fluctuation ¢

(7.21) =P, htx )MV,
Then choosing to write 1/ (¢) in (6.31) in terms of D, derivatives
V(g)=tr((D, ¢)*D, ¢}~ tr[¢* ¢(D,2)*D,Z]-
(7.22) —trl(Z*-D,¢+¢" D, Z2)" (Z*-D,¢ + ¢* D, Z))=1r[(D, $)* -
D, ¢]-1rl¢*¢(D,Z)*D,Z)~tr[(Z* -D,$)*Z*D, 8],

as
¢*-D, Z=M"2(h*)"P,_.3, P Z=0.
But
(D, 9D, ¢l —tr{(Z¥-D,¢)"Z"-D, ¢]=
723 =1r[(D,¢)" -(1=P) D, ¢]=0
as

. .M l2
D,¢=—P-03,P-n*-MV
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due to (7.16). Thus we see that
(7.24) Vig)=—tr[¢" ¢(D, Z)" D, Z|<0
In a similar way, we can show that also

(7.25) Vig=(- Yt MY <0

B+M 1

The conditions on functions #* and 7~ are weaker than in the background
Dirac problem case — now we require that

|oP<1.

8. RELATION TO THE HILBERRT-RIEMANN PROBLEM

As the Grassmann models are completely integrable, one can analyse them
from the point of view of the associated Hilbert-Riemann problem. In this
approach, one introduces a linear system of equations for a N x N matrix-valued
function W(x_.x_.A). where X is an additional complex parameter. such that
the integrability conditions for ¢ are equivalent to the equations of motion for
the non-linear problem in question. In our case, the linear equations are [10]:

2

3. Y= — [3.P.P]Y
* |

(8.1)

“

[0 P, PlY

where P denotes the projector describing the Grassmannian (P =ZZ%). The
integrability condition of the system (8.1) is then given by

(8.2) [a+ d P.PI=0
e.. by the Grassmannian equations of motion. Let us consider first the (PV !
model case, and let us take the solution ()N_,:Pf*lﬂlf’f*lﬂ and denote by

Pg the corresponding projector
(8.3) P, =c, £’+
Then the solution of the system (8.1) is given by

—)

4N

\4‘5

ps

a

(7\—1)“ = A—1

(8.4) v=1 +

N
which, using X P =1 can be rewritten in two equivalent forms (up to over-
g=1



CLASSICAL SOLUTIONS OF TWO-DIMENSIONAL GRASSMANNIAN MODELS 61

all factors)

4x N 2
y=1- P— — P=
(A +1)2 Q:ZM N
(8.5)
2 B-1 2 N

P

o

1
=
+

1

A1 a=1 * A+ a=8+1

These general Y solutions thus exhibit either simultaneous first-order poles at
A=1 and A =—1, or up to second-order poles at A =1 or alternatively at
A=—1

For the case of the Grassmannians, the form of the solutions depends on
whether the solutions are generic or special. For the generic solution described

B+
by Z(8), we have P = E P where P =¢ e and the corresponding solutions

a=p

for ¢ are again given by

4x 8-1 2
(8.6) ye=1 + P+ —P
-1 4 A—1

in complete analogy to (8.4). This expression can also be rewritten in forms
similar to (8.5). For the special solutions, the situation is more complicated.
Let us discuss, as an illustration, the case of M = 2 and look at solutions based
on one vector f (i.e., g, = 3571f). Then for 8, > B, + 1

= - +
(8.7) P= PBl + Pﬁz where P =e, e,

is a solution of the equations of motion discussed in Section 5. The corresponding
solution of the HR problem is given by

SAN+1) Al 2030+ 1) 4% 8-l
y=1 $—— P + P+ P+
=D g - P -n? L, t
2 2
(8.8) +— P, =1 -—P -
N (>\—1)2 ;Z—l B~ A+l P
4) N

A+1? Gy

and we note that this solution exhibits poles of either up to second order simulta-
neously at A =1 and A = — 1, or up to fourth order at A = + 1 or alternatively
at A=—1. For m>2, it is easy to display special types of solutions which
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lead to still higher-order poles at A = = I in . T'he order of these poles is related
to the number of «gaps» in the group of vectors used in the construction of the
solution.

Let us point out at this stage that the technique of the R/ problem. as usually
applied to non-lincar cquations. involves an ansatz for v in terms of only first-
order poles. As scen above, the example of G (M, N). where relations are known
by other techniques. shows that a more complicated ansatz may lead to difterent
and interesting kinds of solutions.

Let us finish this section by noting that in the traditional approach to the /IR
problem. one tries to determine new solutions form the old ones, and attempts
at the same time to determine new field configurations which would automati-
cally solve their non-linear equations of motion. This is done by setting

(89} wlm\\'()\):x()\)wold(}\)

and then trying to solve the resultant cquation for x(A). When we specialize
this procedure to our case, and take for YO some known solutions discussed
above. we do obtain linear equations for x(A): however. they scem to be as hard
to solve as the original equations for Y (A). No particular simplification results
from following the traditional line of approach based on Eqg. (8.9).

9. CONCLUSIONS AND OPEN QUESTIONS

Clearly. although some understanding of the structure of the classical solutions
has been found, there are still many unanswered questions. As far as the classical
solutions are concerned, the main outstanding question is the completeness of
the solutions in more general Grassmannian cases. Then onc would like to under-
stand quantum corrections to these classical results. Of course, the instability
of the solutions, and hence the existence of ncgative modes. complicates the
discussion, but presumably one should be able to find an appropriate analytical
continuation. However. this has turned out to be quite difficult. It Is very diffi-
cult to determine the spectrum of the fluctuation operator (or even be certain
as to the exact number of negative modes), and in onc simple case, when the
spectrum is known. it scems rather difficult to deal with zero modes.

In the approximation of considering only instanton und anti-instanton solu-
tions. Berg and Liischer [11] and Fateev. Frolov and Schiwarz [12] showed that
the quantum corrections to the classical solutions can be described in terms ol
a gas of instanton quarks. It would be interesting to see what impuact the correc-
tions due to non-instanton solutions would have once the properties of this gas.
Perhaps as a result of these corrections the properties of the gas in all G(1/0N\)
models would become more alike, thus providing some connection with the
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results obtained in various 1/N expansions.
Are any of the results found in Grassmannian models also true in other models?

Can

one generalize the techniques discussed to studies of other models, say,

CPY¥!in 2 + 1 dimensions, or non-Abelian gauge theories? The preliminary

answer to the first question seems positive; the answer to the latter one is that

we do not know.
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